

Solar Water Pumping System

Aide Energy (Cayman) Holding Co., Ltd.

Project Management Department Flink Chiu 2013/11/08

Table of Contents

- Project Location
- Equivalent Sunshine Hours
 (ESH)
- Comparison of PumpingSystem
- Power Generation Cost of Generator
- Economic Benefits

- Photo Reference
- System Specification & Components
- System Features
- System Overview
- System Diagram

Project Location

Equivalent Sunshine Hours (ESH)

- Indonesia is in the high ESH area of the world.
- 5 hours of ESH in Indonesia.

Comparison of Pumping System

	Solar Genset (Generator) Pumping System Pumping System		
Power source	Solar	Diesel fuel	
Maintenance cost	Low	Low	
Fuel cost	Free	High	
Environmental impact	Few	High	
Set-up cost	Middle	Low	
Operation time	Daytime	24 hours	
Payback year	4 to 6 years	-	

Power Generation Cost of Generator

Unit: US\$

Horsepower of pump	5HP		
Consumption (kWh)	3.75		
Operation hour (assumption)	5		
Daily consumption (kWh)	18.75		
Diesel fuel cost per kWh	0.35		
Daily diesel fuel cost	6.56		
Yearly diesel fuel cost	2,395.31		

Economic Benefits

Economic Benefits of Solar Water Pumping System:

- The life time of PV modules can last for 25 years.
- The payback year is 4 to 6 years compared with the system with generator.
- Saving diesel fuel cost
- Easy to be installed and maintained
- Low maintenance cost
- High economic benefit in rural area

Photo Reference

System Specification & Components

System Components

- Solar modules
- Solar pump inverter
- Switch box
- Rack

System Specification & Components - continued

System Specification

Model	ADSP3201	ADSP3202	ADSP3323	ADSP3305
Horsepower (HP)	1	2	3	5
Speed governing function	Y			
Frequency (Hz)	50 ~ 60			
Phase / Voltage	3P / 220V		3P / 380V	
Solar system (kW)	2.40	2.88	4.32	5.04
Maximal power output (kW)	1.5	2.2	3.75	5.5
Daily power output (kWh) (ESH=5)	9.6	11.5	17.2	20.1
Daily water output (m³) (Head : 30 meters)	80 ~ 120	100 ~ 150	130 ~ 190	136 ~ 210

System Specification & Components - continued

System Specification

Model	ADSP1201	ADSP1202	ADSP1203	ADSP1205
Horsepower (HP)	1	2	3	5
Speed governing function	N			
Frequency (Hz)	50 ~ 60			
Phase / Voltage	1P / 220V			
Solar system (kW)	2.16	3.36	5.04	6.72
Maximal power output (kW)	1.0	2.0	2.5	5.0
Daily power output (kWh) (ESH=5)	8.6	13.4	20.1	26.8
Daily water output (m³) (Head : 30 meters)	80 ~ 120	100 ~ 150	130 ~ 190	136 ~ 210

System Features

- Generally, the pumping system is AC type, not DC type which can connect with solar system.
- Low system construction and maintenance costs
- High efficiency with smart control function (speed governing and rated speed running) - which is for three-phase type of pump only.
- High reliability with complete protection

System Overview

System Diagram

